

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions

from permissions@acm.org.

© 2022 Association for Computing Machinery

Manuscript submitted to ACM

Interactive and Variable Visualisations of Aggregate Motion

Depicting Movements of Simulated Flocks

Szun Kidd Choi

B. Thomas Golisano College of Computing and Information Sciences, Rochester Institute of Technology

sc4020@rit.edu

According to Aristotle, the whole is greater than the sum of its parts. Craig Reynolds’s 1986 boids simulation was developed

based on the assumption made that the overall motion of a flock of organisms in nature could be expressed as a cumulation

of decisions and behaviours of individual flock members themselves. This paper presents a top-down, graphical approach to

visualising the complex emergent interactions that Reynolds’s simple bottom-up solution generates. Several modifications

and additions are made to the original framework, with the intent of emphasising, and heightening appreciation of, resultant

observable group behaviours.

Additional Keywords and Phrases: flocking algorithm, swarm intelligence, swarming, simulation, collective intelligence,

user interactivity

ACM Reference Format:

Szun Kidd Choi. 2022. Interactive and Variable Visualisations of Aggregate Motion. Depicting Movements of Simulated

Flocks. For IGME 690: Seminar on Intelligent Systems in the Arts, January 10 – May 4, 2022, Rochester, NY. ACM, New

York, NY, USA, 24 pages.

Interactive and Variable Visualisations of Aggregate Motion

2

1 INTRODUCTION

There were two sources of inspiration behind this system. The first hailed from the nature

of air shows, an example of flocking, albeit man-made. The coordinated motions of

squadrons of fighter jets flying together in tight proximity is a sight to behold. This is further

enhanced when colourful smoke is deployed, carving out streaks of vibrancy in the sky.

The second was simply the coordinated group motion that a swarm of insects tends to have.

This system aims to provide a visceral depiction of the collective interactions of members

within a simulated flock. The overall “theme” of the environment can be swapped during

runtime between “artistic” and “plain” colour palettes. On one hand, in artistic mode,

individual agents produce a coloured history of their trajectories behind them in the form of

a trail. In this way, the decisions of the overall group become rendered as lines drawn

onscreen. On the other hand, plain mode removes all trails and instead displays the results

of the flocking algorithm without any visual supplements.

Within this system, agents adhere to the original three flocking rules in Reynolds’s boids

simulation (cohesion, alignment, and separation), with the addition of five more: lifespan,

speed limitation, environment retention, obstacle avoidance, and tendency toward user

interaction locations. These additional rules do not overrule any of the original three, but

instead work together to produce modified interactions between agents and their

environment.

Creating art by leveraging the motions of individual flock members is a process that has

been well-attempted and thoroughly documented online. Nevertheless, existing

implementations all lack the combination of interactivity and an extensive, user-exposed

customisation system with respect to the behaviour of individual agents.

Fig. 1. An

example of the

output the system

can generate.

This was created

using a

combination of

both emergent

agent behaviour

and user

interaction.

Interactive and Variable Visualisations of Aggregate Motion

3

2 BACKGROUND AND RELATED WORK

The flocking algorithm was created in 1986 by Craig Reynolds [1], who published a paper

on the subject in 1987 [2]. He named the agents within his system “boids”. In the simulation,

agents move together, and any changes in direction made by members at the forefront are

propagated throughout the flock. Reynolds’s system is considered an example of swarm

intelligence; each agent is its own entity, capable of making decisions; however, the

behaviour of the resulting formation arises from the collective movements of the agents

themselves. [3]

When in motion, an agent’s movements are governed by three “rules”: flock centring,

velocity matching, and collision avoidance. More recent texts refer to these rules as

cohesion, alignment, and separation, respectively. The influence of each rule contributes

to a steering force that is applied to each agent.

Since its creation, further rules have been developed over time to extend Reynolds’s

original boids implementation. Parker [4] has described several possible modifications.

These include scattering the flock in response to external stimuli and responses to forces,

such as a gust of wind or an underwater current. Some of these modifications have been

used in the presented system to achieve flexibility and customisability.

As mentioned in the previous section, there are numerous examples of artwork, both digital

and physical, that visualise flocking artistically. There also exist sites online that draw the

results of such aggregate motion to the screen in real-time.

Fig. 2.

Eater’s [6]

implementation

of boids. Four

rules whose

values the user

can customise

are exposed.

Besides

toggling trails,

the system’s

appearance

cannot

otherwise be

modified.

Interactive and Variable Visualisations of Aggregate Motion

4

Fig. 3.

Another implementation

of boids. [14] This

version lets users

customise the way

agents’ movement is

drawn to the screen.

The simulation run

shown here is using a

mixture of continuous

lines and a line drawn

from the centre of mass

of the entire flock. It is

unclear what the

influence of each rule is

here.

3 SYSTEM/PROJECT DESCRIPTION

The entire system was created within Unity, with scripting done in C#. as that meant not

needing to write code handling the updating and drawing of the agents to the screen. The

engine provides inbuilt support for raycasting, which was useful for implementing collision

avoidance. It is worth noting that Unity’s physics library was not used in this implementation

of the system, and that, as a result, all code for agent movement was written manually.

This section will be broken down into six subsections, each describing a core component

of the overall system. It will begin with Section 3.1, an overview of program states using a

finite state machine (FSM) diagram, before proceeding to detail the logic that all agents run

each frame during a simulation run. A brief look at the components making up individual

agents in the editor is then supplied in Section 3.2.

As an overview, however, agents begin by looking at all their flockmates, keeping track of

only the ones within a certain visibility region (their “neighbours”). This is detailed in Section

3.3. Next, using the neighbours obtained in the previous step, rule calculations take place.

The original three rules are detailed in Section 3.4, and additional rules are discussed in

Section 3.5.

Finally, interactivity and exposed user-configurable options are covered in Section 3.6.

3.1 Program Architecture

The following is an FSM describing all possible defined states the program can be in.

Interactive and Variable Visualisations of Aggregate Motion

5

The simulation setup

screen is where variable

values (as highlighted in

Section 3.6) can be

altered, as well as trail

colours. Pressing Left

Control on that screen

brings users to the

obstacle placement

screen, and another

press of the same key

brings the user back to

the simulation setup

screen. From that same

screen, a press of the

Enter key begins the

simulation with the user-

defined variable values,

trail colours, and

obstacle locations,

spawning agents at

random locations on-screen. Only when all agents “die” (i.e., the number of seconds

specified by the value of the “lifespan” slider has elapsed) is the user returned to the

simulation setup screen once again.

3.2 Agent Architecture

Because the system does not leverage Unity’s physics library, individual agents do not have

rigid body components. They are, instead, comprised of a sprite, a trail renderer, a collider,

and a script to control movement. The dimensions – and, therefore, bounds – of an agent,

then, are defined directly by its sprite.

3.3 Neighbour-Checking

Before any of the calculations for each of the three rules can take place, an agent needs to

know about its immediate neighbours. The following diagram illustrates the local visibility

region of an agent.

Fig. 4. FSM of program states

Interactive and Variable Visualisations of Aggregate Motion

6

In the system, an agent’s visibility region

is a circle whose size is described by a

radius, r. Flockmates within this circle are

“visible” and considered neighbours. They

are used when applying the flocking rules.

All the other agents are ignored. As the

value of r increases, the agents can “see”

more flockmates, resulting in a more

cohesive flock.

The flock is constantly moving, and so the

simulation must update each agent’s view

of the world each frame, to acquire each

agent’s unique perspective.

Simplifying the formula proposed by

Seeman and Bourg [5], the Euclidean

distance is used to test which of an agents

flockmates is to be considered a

neighbour that frame:

𝑑 = √(𝑥𝑎 − 𝑥𝑏)2 + (𝑦𝑎 − 𝑦𝑏)2

where 𝑥𝑎 and 𝑥𝑏 are the x-coordinates for the current agent and the current flockmate,

respectively. Similarly, 𝑦𝑎 and 𝑦𝑏 are the y-coordinates for the current agent and the current

flockmate, respectively. If

𝑑 ≤ 𝑟

then the flockmate under consideration is counted as a neighbour. Additionally, 𝑑 is

expressed in terms of the length of the agent’s sprite. This was done to allow the system to

scale dynamically should the size of the agents be modified in future iterations.

3.4 The (Original) Three Rules

3.4.1 Cohesion

Cohesion is a rule that

prevents agents from

breaking off from the flock.

To achieve this, each agent

steers toward the average

position of its neighbours in

a method like that proposed

by Eater [6], such that

Fig. 5. The visibility region of an agent.

Fig. 6. An illustration

of the cohesion rule.

[1] Here, the current

agent (green) must

steer left (red arrow)

toward the average

position of its

neighbours (green

dot).

Interactive and Variable Visualisations of Aggregate Motion

7

𝑠𝑎𝑣𝑔 =
𝑠𝑡𝑜𝑡𝑎𝑙

𝑛

where 𝑠 is a position vector and 𝑛 is the number of neighbours the current agent has. 𝑠𝑡𝑜𝑡𝑎𝑙

is a running total of the positions of all an agent’s neighbours. The current agent’s velocity

is then updated via:

𝑣𝑛𝑒𝑤 = 𝑣𝑐𝑢𝑟𝑟 + (𝑠𝑎𝑣𝑔 − 𝑠𝑐𝑢𝑟𝑟) ∗ 𝐹𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛

where 𝑠𝑐𝑢𝑟𝑟 is the agent’s position vector and 𝐹𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 is a constant that determines the

influence of the cohesion rule.

The difference between 𝑠𝑎𝑣𝑔 and 𝑠𝑐𝑢𝑟𝑟 forms a relationship that is directly proportional: the

greater the difference, the larger the corrective force required to return a straying agent to

its flock. [5]

3.4.2 Alignment

Alignment is a rule that

forces agents to move in

the same general

direction. To do this, each

agent’s velocity is adjusted

such that it matches the

average velocity of its

neighbours in a method

like that proposed by Eater

[6], such that

𝑣𝑎𝑣𝑔 =
𝑣𝑡𝑜𝑡𝑎𝑙

𝑛

where 𝑣 is a position vector. 𝑣𝑡𝑜𝑡𝑎𝑙 is a running total of the positions of all an agent’s

neighbours. The current agent’s velocity is then updated via:

𝑣𝑛𝑒𝑤 = 𝑣𝑐𝑢𝑟𝑟 + (𝑣𝑎𝑣𝑔 − 𝑣𝑐𝑢𝑟𝑟) ∗ 𝐹𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

where 𝐹𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 is a constant that determines the influence of the alignment rule.

Like cohesion, the difference between 𝑣𝑎𝑣𝑔 and 𝑣𝑐𝑢𝑟𝑟 forms a relationship that is directly

proportional.

3.4.3 Separation

Separation states that agents should stay some minimum distance apart to avoid collisions,

despite the cohesion and alignment rules bringing them together. In this system, this

minimum distance may be different from the radius of the agent’s visibility region! Based on

Eater [6], a running total of the distance vectors between the agent and neighbours that are

Fig. 7. An illustration

of the alignment

rule. [1] The current

agent (green) must

steer left (red arrow)

to match the

average velocity of

its neighbours (blue

line drawn from the

current agent).

Interactive and Variable Visualisations of Aggregate Motion

8

too close is obtained by using the

Euclidean distance obtained in

Section 3.2. Then, the agent’s

velocity is updated via:

𝑣𝑛𝑒𝑤 = 𝑣𝑐𝑢𝑟𝑟 + 𝑑𝑡𝑜𝑡𝑎𝑙

∗ 𝐹𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

where 𝑑𝑡𝑜𝑡𝑎𝑙 is the vector sum of

all distance vectors between the

agent and neighbours that present a potential collision, and 𝐹𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 is a constant that

determines the influence of the separation rule.

Here, the corrective steering force is inversely proportional to the actual separation

distance. This will make the steering correction force greater the closer an agent gets to a

neighbour. [5]

3.5 Additional Rules

3.5.1 Lifespan

The lifespan of an agent determines how long it is alive for i.e., how long it is active in the

Scene in seconds. It therefore determines the duration of the current simulation run

altogether.

3.5.2 Tendency Toward User Interaction Location

Agents are “attracted” to the location of the cursor while the user holds down the left mouse

button. This was inspired by the mobile games FROST [7] and Lifelike [8], as well as the

interactive physical installation SWARM [9], and was included to allow for added user

interactivity. Based on the implementation proposed by Parker [4], the following

accomplishes this:

𝑣𝑛𝑒𝑤 =
𝑠𝑐𝑢𝑟𝑠𝑜𝑟 − 𝑠𝑐𝑢𝑟𝑟

𝑚

where 𝑠𝑐𝑢𝑟𝑠𝑜𝑟 is the position of the cursor in world coordinates, and 𝑚 is the number of

frames in total needed to move the agent towards the cursor. As 𝑚 increases, then, so does

the time it takes for the agents to reach the cursor.

3.5.3 Environment Retention

This was quickly deemed necessary, since flocks, due to their impromptu decision-making,

tend to move off-screen quite quickly. Using an implementation drawn from that proposed

by Eater [6] and Parker [4], a correctional force is applied in the opposite direction of an

agent’s movement if it approaches a bounding margin of a set distance from any of the four

edges of the screen via

𝑣𝑥,𝑛𝑒𝑤 = 𝑣𝑥,𝑐𝑢𝑟𝑟 + 𝐹𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛

Fig. 8. The

separation rule. [1]

The current agent

(green) must steer

right (red arrow) to

distance itself from

its neighbours.

Interactive and Variable Visualisations of Aggregate Motion

9

𝑣𝑥,𝑛𝑒𝑤 = 𝑣𝑥,𝑐𝑢𝑟𝑟 − 𝐹𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛

if the agent approaches the left and right edges of the screen, respectively, and

𝑣𝑦,𝑛𝑒𝑤 = 𝑣𝑦,𝑐𝑢𝑟𝑟 + 𝐹𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝑣𝑦,𝑛𝑒𝑤 = 𝑣𝑦,𝑐𝑢𝑟𝑟 − 𝐹𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛

if the agent approaches the lower and upper edges of the screen, respectively.

The individual x- and y-components of the agent’s velocity are modified directly in this

implementation, and 𝐹𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is the amount of force by which to coerce the agent back on-

screen. As 𝐹𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 increases, the more closely agents respect the predefined margins,

but also the more abrupt – and, therefore, the more unrealistic – the corrective turns they

tend to make. This approach assumes the use of a standard Cartesian coordinate plane for

world coordinates, with the origin O(0, 0) at the screen’s centre.

3.5.4 Obstacle Avoidance

Placing user-defined constraints on the motions of flocks in the form of obstacles agents

cannot fly through was included for two reasons. First, it provided a greater deal of

customisability and provided an additional layer of interactivity. Second, the placement of

such constraints causes emergent behaviour that effectively draws “stencilled out” shapes

to the canvas.

The implementation is akin to that provided by Bevilacqua [10], which utilises circles for

obstacles, and outfits each agent with two “feelers”, one which is half the length of the other.

These feelers are components separate to that of the radius, 𝑟, defining an agent’s visibility

region.

Subsequently, a raycast is used to determine whether either of the two feelers are

intersecting with an obstacle ahead. Bevilacqua notes in their implementation that it is

necessary to handle cases where multiple objects may present potential collisions, since

only the closest, “most threatening” obstacle need be considered.

Fig. 9. The two feelers,

as described by

Bevilacqua [10].

MAX_SEE_AHEAD* 0.5

is half the length of

MAX_SEE_AHEAD.

Both point in the same

direction.

Interactive and Variable Visualisations of Aggregate Motion

10

However, as Unity’s raycast method

provides an overload where only the first

object intersected with gets returned

[11][12], the system does not need to

account for this.

If either feeler intersects with an obstacle,

then the following is used to compute an

avoidance force vector:

𝑑 = 𝐴 − 𝐶

𝑎 = 𝑑̂ × 𝐹𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒

where 𝐴 is a vector representing the longer

of the two feelers, 𝐶 is the position of the

centre of the obstacle, 𝑑 is the distance

vector between 𝐴 and 𝐶, 𝑑̂ is the value

obtained after normalising 𝑑, and

𝐹𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 is the amount by which to scale

the avoidance force. Finally, the agent’s

velocity is updated:

𝑣𝑛𝑒𝑤 = 𝑣𝑐𝑢𝑟𝑟 + 𝑎

3.5.5 Speed Limitation

It can be observed in the definitions of previous rules that, to move an agent in the desired

direction, the steering force is applied by means of multiple vector sums. This can cause

agents to travel at unrealistically high speeds, which is in line with Parker’s own discoveries

[4]. By limiting the magnitude of each agent’s velocity, the system is kept under control; this

rule works hand-in-hand with environment retention such that agents are prohibited from

escaping the boundaries of the canvas.

In an implementation similar to that proposed by Parker, each agent’s speed is obtained by

calculating the magnitude of its velocity vector. If this value is larger than a prescribed

maximum, it is limited by means of

𝑣𝑛𝑒𝑤 = 𝑣𝑐𝑢𝑟𝑟 ∗ 𝑆𝑚𝑎𝑥

Fig. 10. Bevilacqua [10] states that only the

closest or “most threatening” obstacle must be

used for calculations. Unity’s raycast system

eliminates the need for this, since only the first

object the ray intersects with is returned.

Fig. 11. An illustration of the obstacle

avoidance rule being applied. [10] The

calculations above in this case result in the

projected avoidance route (orange dotted

line).

Interactive and Variable Visualisations of Aggregate Motion

11

where 𝑣𝑐𝑢𝑟𝑟 is the value obtained after normalising 𝑣𝑐𝑢𝑟𝑟 and 𝑆𝑚𝑎𝑥 is the maximum

allowed speed. Note the use of an uppercase 𝑆 to denote speed in contrast to the

lowercase 𝑠 used earlier to denote position.

3.6 Interactivity

Aside from user-defined obstacle placement and making agents flock to the user’s cursor

while the left mouse button is held down, the system also exposes several of the previously

mentioned variables.

The variables exposed

were chosen based on

whether they had the

potential to “break” the

simulation. For instance,

𝐹𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 was not

included, simply because

altering that value might

result in agents leaving

the screen entirely. The

margin – and, thus, the

canvas size altogether –

was also not exposed for

similar reasons.

Users are also permitted

to modify the colours of

agents’ trails. By dividing

the trails up into start,

middle, and end

segments, different

colours can be selected

for each. Automatic

Fig. 12. The obstacle placement screen. Clicking the right mouse

button places an obstacle, and clicking the left while hovering

over an existing obstacle removes it. Up to a maximum of 10

obstacles can be placed.

Fig. 13. The exposed

parameters whose

values, and thus

influence, can be

adjusted prior to a

simulation run using

sliders.

Interactive and Variable Visualisations of Aggregate Motion

12

interpolation of colours in

between each of the segments

illustrates the evolution of an

agent’s path over time, and

creates an illusion of depth,

particularly if high-contrast

colours are selected. The colour

picker was obtained via a third-

party library [13].

Throughout the program,

pressing the spacebar switches

between plain and artistic

modes. This was a stylistic

choice, to create a contrast

between how flocks appear in

nature, versus the system’s

“artistic” eye. Additionally, to

draw attention to the impact of

obstacle placement, pressing Right Shift toggles visibility of all obstacles in the Scene.

Fig. 14. System UI where the colours of agents’ trails can

be adjusted on a per-segment basis. Transparency is also

supported, and mapped directly to the alpha channel of

each colour.

Fig. 15 (upper left). The simulation rendered

using artistic mode. Agents display trails.

Fig. 16 (upper right). The same simulation

rendered using plain mode. Agents do not

display trails.

Fig. 17 (lower left). The same simulation

rendered in artistic mode, with obstacle

visibility turned off.

Interactive and Variable Visualisations of Aggregate Motion

13

4 EXPERIMENTS AND RESULTS

Screenshots of selected output runs are included here, alongside slider values used, where

appropriate.

The experiment was broken up into two parts. In the first, data for each run consisted of

keeping two of the three “original” rules at 100%, with the third being set to 0%, to highlight

the significance of each rule in its absence. This was carried out for lifespans of 5s, 10s,

and 20s. This was necessary because of the sheer number of possible value combinations.

The remaining slider values were kept constant at the 50% mark. Obstacles were also not

used.

In the second, user testing was carried out with no restrictions, and the results were

recorded.

Those interested in either viewing the results of a simulation run in real-time or interfacing

with the system itself can do so at https://juuu-jiii.github.io/Stork2D/build.html.

4.1 Experiment Data, Part 1

Fig. 18. Cohesion = 0, alignment = 1, separation = 1, and lifespan = 5s.

Interactive and Variable Visualisations of Aggregate Motion

14

Fig. 19. Cohesion = 0, alignment = 1, separation = 1, and lifespan = 10s.

Fig. 20. Cohesion = 0, alignment = 1, separation = 1, and lifespan = 20s.

Interactive and Variable Visualisations of Aggregate Motion

15

Fig. 21. Cohesion = 1, alignment = 0, separation = 1, and lifespan = 5s.

Fig. 22. Cohesion = 1, alignment = 0, separation = 1, and lifespan = 10s.

Interactive and Variable Visualisations of Aggregate Motion

16

Fig. 23. Cohesion = 1, alignment = 0, separation = 1, and lifespan = 20s.

Fig. 24. Cohesion = 1, alignment = 1, separation = 0, and lifespan = 5s.

Interactive and Variable Visualisations of Aggregate Motion

17

Fig. 25. Cohesion = 1, alignment = 1, separation = 0, and lifespan = 10s.

Fig. 26. Cohesion = 1, alignment = 1, separation = 0, and lifespan = 20s.

Interactive and Variable Visualisations of Aggregate Motion

18

4.2 Experiment Data, Part 2

Fig. 27. User test 1. Note the placement of the three obstacles.

Interactive and Variable Visualisations of Aggregate Motion

19

Fig. 28. User test 2, using the same three obstacles as in user test 1.

Interactive and Variable Visualisations of Aggregate Motion

20

Fig. 29. User test 3. 5s lifespan. The left mouse button was clicked on the upper-right corner and

dragged, in an arc, down to the lower-right corner.

Fig. 30. User test 4. 5s lifespan. The left mouse button was clicked and held in the centre of the

screen for the entire duration of the simulation run.

Interactive and Variable Visualisations of Aggregate Motion

21

5 EVALUATION AND DISCUSSION

Because the initial motivation behind the creation of this system was to create an interactive

approach to appreciating flocking as an art, it was decided that the system would be

evaluated in two parts: based on how well the movement of flocks were conveyed with

different parameters, and how users interacted and interfaced with the system.

However, beyond this, it was challenging to ascertain, define, and standardise methods by

which to evaluate the output generated by the system. With the sheer number of variables,

it was necessary to restrict the dataset to a select few, hence the conditions set for the first

part of the experiment. This was evaluated based on how well the significance of each rule

was highlighted. In the second part of the experiment, it was determined that the values of

the sliders were not as important as users’ actions themselves. In turn, said actions were

monitored closely to see which interactive features of the experience users paid most

attention to. Any side remarks or comments were also noted.

5.1 Interpretation of Experiment Data, Part 1

5.1.1 Cohesion = 0, Alignment = 1, Separation = 1

This output appeared to be very disorderly, and this lack of organisation did not seem to

improve over time. The influence of the alignment and separation rules are very apparent,

however; most agents travelled in similar directions, as evidenced by the near-parallel lines

of similar hues throughout. Distance was maintained between each agent as well.

5.1.2 Cohesion = 1, Alignment = 0, Separation = 1

Here, output appeared squiggly and doodle-like. As time passed, multiple flocks merged

into a single flock, which then travelled together. This is expected, as alignment controls

the movement of agents such that they attempt to match velocities with their neighbours.

Cohesion and separation appear to work against each other, here, as there are some

moments where agents come very close to each other, and others where they move

noticeably far apart.

5.1.3 Cohesion = 1, Alignment = 1, Separation = 0

Output in this scenario appeared very linear and uniform. Most - if not all - agents moved

in the same general direction, very close to one another, regardless of time elapsed. Again,

this is expected, since separation is the only rule amongst the three that works to keep flock

members apart from each other. Its absence here is very apparent.

Interactive and Variable Visualisations of Aggregate Motion

22

5.2 Interpretation of Experiment Data, Part 2

Users, upon first interfacing with the system, spent a decent amount of time configuring

slider values and obstacle placements before running the simulation. This was perhaps

because of the large amount of data and adjustable parameters presented on the

simulation setup screen, which, in turn, possibly led to cognitive overload. After the first

run, however, they were quick to experiment with further values in subsequent runs.

Although obstacle placement and theme switching were options that oftentimes were

quickly forgotten, users appeared to find delight in interacting with agents using the mouse.

The images on the previous page were generated solely using user interaction. One user

made the unexpected remark that the system presented potential to act as a source of, and

starting point for, artwork inspiration, “especially with the click-and-drag feature.”

In line with the comment in the previous paragraph, it was observed that giving users some

degree of control over the creative process while letting an underlying algorithm deal with

the heavy lifting in the drawing department produced markedly positive responses. The

behaviour arising from agents’ interactions amongst one another seemed to allow users to

focus on immersing themselves in, and even enjoying, the experience of interfacing with

the system and creating custom pieces.

5.3 Discussion, Weaknesses, and Next Steps

A notable observation made during the experimentation process was the role of the lifespan

rule. In general, longer simulations (longer than 20 seconds) resulted in noisier data; agents

tended to draw over existing paths due to limited canvas space. However, selection of

colours with high contrast appeared to mitigate this issue, since the differences gave an

illusion of depth. Shorter lifespans (5 to 20 seconds) naturally resulted in more minimalist

results with less opportunity for emergent behaviour to reveal itself. Nevertheless, it

appeared that user interaction under this circumstance produced controlled, yet visually

compelling results.

The current implementation does not account for an agent’s field of view. As detailed in

Section 3.2, an agent’s visibility region is a circle. This is not very physically accurate,

however, for organisms in a flock tend to not have the capability to turn their necks around

fully. This means that narrower flock formations, such as that of a trail of ants, are not

currently supported. A future iteration could include modifications to the calculations

determining the visibility region such that it becomes more of a visibility arc defined by both

a radius and an angle instead.

As noted earlier, the system does not leverage Unity’s inbuilt physics library, and instead

relies on manually-programming scripts to handle agent movement. As sources consulted

Interactive and Variable Visualisations of Aggregate Motion

23

to create the simulation described implementation details primarily in terms of pseudocode,

this choice was deliberate, to ensure maximum reproducibility both inside and outside of

Unity. A downside that was created because of this is the fact that collision avoidance and

handling is not perfect. This is illustrated in Figures 27 and 28; observe that the paths agents

take do not fully respect the boundaries of obstacles placed. They move into the obstacle

for a short distance, before turning and heading in a different direction. The accuracy of

future iterations, then, could potentially benefit from replacing the existing implementation

with one that fully leverages rigid bodies and Unity’s physics library, albeit at the cost of

reproducibility.

A factor not included in any of said evaluation criteria was that of aesthetics. Simply put, it

was difficult to decide what elements tended to lead to visually pleasing results. Part of the

reason for this was, again, due to the large number of customisable parameters. Removing

individual rules was undoubtedly a good start, however, since it highlighted the

contributions of each. Perhaps next steps might include running further tests and removing

other rules from the equation, before obtaining feedback from human judges to determine

which rules are most influential in generating appealing output.

It might be worth investing some time into investigating further the potential use of this

system as a tool in creating artwork. For this, additional user studies will need to be

conducted, with questions geared more toward the system interface’s ease of use, as well

as overall functionality. Questions aimed at evaluating the aesthetics of generated output

could also be asked.

6 CONCLUSION

The system presented in this paper was developed as an approach for depicting visually

and interactively the complex motions that Reynolds’s boids simulation produces. Based

on the results obtained from experiments, it can be concluded that the system does convey

various types of flock movements based on supplied parameters, despite some physical

inaccuracies caused by implementation and design choices. It can also be concluded that,

regardless of the fact some features were given more attention by users than others, the

interactivity and customisability enhances the overall appreciation of emergent observable

group behaviours produced by the flocking algorithm. Future work could involve improving

the physical accuracy of the simulation, conducting further experiments to determine the

parameters – or combinations thereof – that produce aesthetically pleasing results, and

investigating the potential of the system to be used as an art tool.

REFERENCES

[1] Craig W Reynolds. 1995. Boids (Flocks, Herds, and Schools: a Distributed

Behavioral Model). Boids. Retrieved from https://www.red3d.com/cwr/boids/

Interactive and Variable Visualisations of Aggregate Motion

24

[2] Craig W. Reynolds. 1987. Flocks, herds and schools: A distributed behavioral

model. Proceedings of the 14th annual conference on Computer graphics and

interactive techniques - SIGGRAPH (1987).

DOI:https://doi.org/10.1145/37401.37406

[3] Sahil Gupta. 2021. Introduction to Swarm Intelligence -

GeeksForGeeks. GeeksForGeeks. Retrieved from

https://www.geeksforgeeks.org/introduction-to-swarm-intelligence/

[4] Conrad Parker. 2007. Boids Pseudocode. Boids Pseudocode. Retrieved from

http://www.kfish.org/boids/pseudocode.html

[5] David M Bourg and Glenn Seemann. 2004. AI for Game Developers. O’Reilly.

[6] Ben Eater. Boids algorithm demonstration. Ben Eater. Retrieved from

https://eater.net/boids

[7] FROST - A Mesmerizing iOS Game. FROST - A Mesmerizing iOS Game.

Retrieved from http://frost-game.com/

[8] Lifelike by kunabi brother. Lifelike by kunabi brother. Retrieved from

http://www.lifelikegame.com/

[9] SWARM - Interactive Installation - Sometimes | Design Studio. sometimes.

Retrieved from https://sometimes.design/projects/swarm-installation/

[10] Fernando Bevilacqua. 2013. Understanding Steering Behaviors: Collision

Avoidance. Envato Tuts+. Retrieved from

https://gamedevelopment.tutsplus.com/tutorials/understanding-steering-behaviors-

collision-avoidance--gamedev-7777

[11] Scripting API: Physics2D.Raycast - Unity. Unity Documentation. Retrieved from

https://docs.unity3d.com/ScriptReference/Physics2D.Raycast.html

[12] Scripting API: RaycastHit2D - Unity. Unity Documentation. Retrieved from

https://docs.unity3d.com/ScriptReference/RaycastHit2D.html

[13] Unity Color Picker - UnityList. UnityList. Retrieved from

https://unitylist.com/p/qes/Unity-Color-Picker

[14] Dan Gries. 2013. ColorBoids: The boid algorithm in five dimensions | Rectangle

World. Rectangle World. Retrieved from

http://rectangleworld.com/blog/archives/952

APPENDIX A: ACCESSING THE SYSTEM

A site summarising paper details has been deployed at: https://juuu-jiii.github.io/Stork2D/.

The system is also live and accessible at: https://juuu-jiii.github.io/Stork2D/build.html.

NOTE: Due to the way resolution is handled, ensure that the maximise button on

the lower-right corner of the frame is clicked before the program finishes loading.

APPENDIX B: SOURCE CODE

Source code for this project can be found at: https://github.com/juuu-jiii/Stork2D.

